A QoS-Aware BPEL Framework for Service Selection and Composition Using QoS Properties

Chia-en Lin and K. Kavi
WSDL; WS-BPEL; Quality of Services; Nonfunctional Properties; Service Composition

The promise of service oriented computing, and the availability of web services in particular, promote delivery of services and creation of new services composed of existing services – service components are assembled to achieve integrated computational goals. Business organizations strive to utilize the services and to provide new service solutions and they will need appropriate tools to achieve these goals. As web and internet based services grow into clouds, inter-dependency of services and their complexity increases tremendously. The cloud ontology depicts service layers from a high-level, such as Application and Software, to a low-level, such as Infrastructure and Platform. Each component resides at one layer can be useful to others as a service. It hints the amount of complexity resulting from not only horizontal but also vertical integrations in building and deploying a composite service. Our framework tackles the complexity of the selection and composition issues with additional qualitative information to the service descriptions using Business Process Execution Language (BPEL). Engineers can use BPEL to explore design options, and have the QoS properties analyzed for the design. QoS properties of each service are annotated with our extension to Web Service Description Language (WSDL). In this paper, we describe our framework and illustrate its application to one QoS property, performance.We translate BPEL orchestration and choreography into appropriate queuing networks, and analyze the resulting model to obtain the performance properties of the composed service. Our framework is also designed to support utilizations of other QoS extensions of WSDL, adaptable business logic languages, and composition models for other QoS properties.

Publish Date: 
Saturday, June 1, 2013
International Journal On Advances in Software, v 6 n 1&2
Paper URL: